Search results for "MAP Kinase Kinase Kinase 5"

showing 3 items of 3 documents

Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O.

2006

Following the observation that cells are able to recover from membrane lesions incurred by Staphylococcus aureus alpha-toxin and streptolysin O (SLO), we investigated the role of p38 in this process. p38 phosphorylation occurred in response to attack by both toxins, commencing within minutes after toxin treatment and waning after several hours. While SLO reportedly activates p38 via ASK1 and ROS, we show that this pathway does not play a major role for p38 induction in alpha-toxin-treated cells. Strikingly divergent effects of p38 blockade were noted depending on the toxin employed. In the case of alpha-toxin, inhibition of p38 within the time frame of its activation led to disruption of th…

KeratinocytesProgrammed cell deathStaphylococcus aureusCell Membrane Permeabilityp38 mitogen-activated protein kinasesBacterial ToxinsBiophysicsBiologymedicine.disease_causeMAP Kinase Kinase Kinase 5Biochemistryp38 Mitogen-Activated Protein KinasesMicrobiologyHemolysin ProteinsAdenosine TriphosphateBacterial ProteinsProto-Oncogene ProteinsmedicineHumansASK1PhosphorylationMolecular BiologyCells CulturedPore-forming toxinToxinCell MembraneCell BiologyProtein-Tyrosine KinasesBlockadeCell biologyEnzyme ActivationStreptolysinsPhosphorylationStreptolysinBiochemical and biophysical research communications
researchProduct

Fatty acids liberated from low-density lipoprotein trigger endothelial apoptosis via mitogen-activated protein kinases.

2005

Enzymatic modification of low-density lipoprotein (LDL) as it probably occurs in the arterial intima drastically increases its cytotoxicity, which could be relevant for the progression of atherosclerotic lesions. LDL was treated with a protease and cholesterylesterase to generate a derivative similar to lesional LDL, with a high content of free cholesterol and fatty acids. Exposure of endothelial cells to the enzymatically modified lipoprotein (E-LDL), but not to native or oxidized LDL, resulted in programmed cell death. Apoptosis was triggered by apoptosis signal-regulating kinase 1 dependent phosphorylation of p38. Depletion and reconstitution experiments identified free fatty acids (FFA)…

Programmed cell deathp38 mitogen-activated protein kinasesBlotting WesternApoptosisDNA FragmentationBiologyFatty Acids NonesterifiedMAP Kinase Kinase Kinase 5p38 Mitogen-Activated Protein Kinaseschemistry.chemical_compoundHumansPhosphorylationMolecular BiologyCells CulturedCaspase 7Cell growthKinaseCaspase 3Cell BiologyCell biologyLipoproteins LDLchemistryBiochemistryApoptosisLow-density lipoproteinCaspasesPhosphorylationlipids (amino acids peptides and proteins)Endothelium VascularLipoproteinOleic AcidCell death and differentiation
researchProduct

Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS.

2005

Phosphorylated p38 mitogen-activated protein kinase (p38MAPK), but not activated c-jun-N-terminal kinase (JNK), increases in the motor neurons of transgenic mice overexpressing ALS-linked SOD1 mutants at different stages of the disease. This effect is associated with a selective increase of phosphorylated MKK3-6, MKK4 and ASK1 and a concomitant upregulation of the TNFalpha receptors (TNFR1 and TNFR2), but not IL1beta and Fas receptors. Activation of both p38 MAPK and JNK occurs in the activated microglial cells of SOD1 mutant mice at the advanced stage of the disease; however, this effect is not accompanied by the concomitant activation of the upstream kinases ASK1 and MKK3,4,6, while both …

p38 mitogen-activated protein kinasesMAP Kinase Kinase 3Mice TransgenicMAP Kinase Kinase 6BiologyMAP Kinase Kinase Kinase 5p38 Mitogen-Activated Protein KinasesReceptors Tumor Necrosis FactorCellular and Molecular NeuroscienceMiceSuperoxide Dismutase-1Downregulation and upregulationAnimalsHumansASK1RNA Messengerfas ReceptorPhosphorylationReceptorProtein kinase AMolecular BiologyP38MAPK cascadeMotor NeuronsKinaseSuperoxide DismutaseTumor Necrosis Factor-alphaAmyotrophic Lateral SclerosisJNK Mitogen-Activated Protein KinasesReceptors Interleukin-1Cell BiologyCell biologyEnzyme ActivationMice Inbred C57BLDisease Models AnimalTumor Necrosis Factor Decoy ReceptorsSpinal CordReceptors Tumor Necrosis Factor Type IDisease ProgressionTumor necrosis factor alphaSignal TransductionMolecular and cellular neurosciences
researchProduct